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Sequence alignment

Goal: Line up pairs of strings (DNA, RNA, protein, ...)
Uncover functional, structural, or evolutionary relationships

S1 = GRTCPKPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
S, = EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGPEETECTKLGNWSAMPSCKA



Sequence alignment algorithms

Typically optimize for alignment features:

Number of matching characters, number of gaps, ...
[Needleman and Wunsch ‘70; Gotoh ‘82]

Standard algos solve for alignment maximizing weighted sum
How to tune the feature weights?
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Sequence alignment algorithms

Can sometimes access ground-truth alignment
Requires extensive manual alignments

Given set of application’s “typical” alignment problems,
together with ground-truth alignments,
can we learn parameters that recover ground truth?
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Model

1. Fix a parameterized alignment optimization function
2. Receive sample problems from unknown distribution

Sequence §; Sequence S,
Sequence S; Xx Sequence Sy,
Alignment Alignment

3. Find parameter values with best performance over samples

|

| Closest to ground truth, for example




Model

1. Fix a parameterized alignment optimization function
2. Receive sample problems from unknown distribution

Sequence §; Sequence S,
Sequence S; Xx Sequence Sy,
Alignment Alignment

3. Find parameter values with best performance over samples

Model studied from empirical perspective
Kim and Kececioglu ‘07; Xu, Hutter, Hoos, Leyton-Brown ‘08; Dai, Khalil, Zhang, Dilkina, Song ‘17 ...



Model

1. Fix a parameterized alignment optimization function
2. Receive sample problems from unknown distribution

Sequence §; Sequence S,
Sequence S; Xx Sequence Sy,
Alignment Alignment

3. Find parameter values with best performance over samples

Model studied from theoretical perspective
Gupta and Roughgarden '16; Kleinberg, Leyton-Brown, Lucier ‘17; Weisz, Gyorgy, Szepesvari ‘18 ...



Questions

Focus of this talk:

Will those parameters have high performance in expectation?

Sequence $; / Sequence S, / Sequence § 3

Sequence S; Sequence Sy, Sequence S’ ¢
Y Alignment J Alignment

Focus of prior work [e.g., Kim and Kececioglu ‘07/]:

Algorithmically, how to find good parameters over training set



Model

D: Distribution over sequence pairs (S,S")
R%: Set of parameters

For any sequence pair (S,S"):
u,(S,S") = utility of using params p € R? to align S, S’
Similarity between algorithm’s output & ground truth

Generalization: Given samples (83, 51), -, (Sm, Sm)~D,

1 ! /
forany p € RY, —~ i=1Up (S5, S;)) — Es5yp[up(S,S )]‘ < ?



Primary challenge:
Algorithmic performance is volatile function of parameters

Similarity to ground truth

For well-understood functions in machine learning:
Close connection between function parameters and value



Outline

Pairwise sequence alignment algorithms

Sample complexity for pairwise alignment
Multiple-sequence alignment algorithms

Sample complexity for multiple-sequence alignments
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Additional applications



Pairwise sequence alignment

Input: Two sequences §,S’ € "
Alignment: Sequences t,7" € (X U {—})* such that:

Deleting “—" yields S from T and §' from 7’
Gap
_4
S=ACTG t=A--CTG
S=GTCA 7’'=-GCTCA -
t t
I Mismatch
Match

Insertion/deletion (indel)



Pairwise sequence alignment algorithms

Standard algorithm with parameters pq, p,, p3 = 0:
Use dynamic programming to find alignment A maximizing:

(# matches) — p; - (# mismatches) — p, - (# indels) — p3 - (# gaps)

Gap

4
S=ACTG T=A--CTGQG
SS=GTCA 7=-GTCA -
t t
II\/Iismatch
Match

Insertion/deletion (indel)



Pairwise sequence alignment algorithms

More generally, given parameters p € R%:
Use dynamic programming to find alignment A maximizing:

p1- fr(A) + -+ pg - fa(4)

f1(4), ..., f;(A) features of alignment A (e.g., # matches, ...)



Pairwise sequence alignment algorithms

-~-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EETECTKLGNWSAMPSC-KA

Ground-truth alignment



Pairwise sequence alignment algorithms

KPDDLPFSTVVP-LKTFYEPG VSRGGM INTLKC
FPSRPDNGFVNYPAKPTLYY SLDGP- AMPSC-

Ground-truth alignment

---KPDDLPFSTVVPLKTFYEPG SRGGM INTLKC
FPSRPDN-GFVNYPAKPTLYYK- -SLDGP -AMPSC

Alignment by algorithm with poorly-tuned parameters

-G
E-

G
E




Pairwise sequence alignment algorithms

-G VP- VSRGGM NTLKC
E- NYP SLDGP- MPSC-

Ground-truth alignment

---KPDDLPFSTVVPLKTFYEPG SRGCGM INTLKC
FPSRPDN-GFVNYPAKPTLYYK- -SLDGP -AMPSC

Alignment by algorithm with poorly-tuned parameters

G -VP VSRGGM NTLKC
E NYP -SLDGP -MPSC

Alignment by algorithm with well-tuned parameters

G
E
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Piecewise-constant utility functions

u,(p)

‘ A,

P2

Theorem x = (5,57
If for any problem x, the func p = u,(x) is piecewise constant and

boundaries between pieces detined by k hyperplanes:
Pseudo-dimension of {up ‘ p € ]Rd} is O(dlogk)
dlogk

= ) samples is e-optimal on D.

An optimal p on O (

Need to show piecewise constant utilities and bound log(k)



Key structural property

Lemma:
» For any sequence pair S, S’ € I, there exists partition of R? such that:

For any region R, across all p € R, algorithm’s output is invariant
(total # allgnments

* Partition induced by ) hyperplanes

P2
A

> P1



Key structural property

Lemma:
» For any sequence pair S,S’ € I, there exists partition of R? such that:
For any region R, across all p € R, algorithm’s output is invariant

+ Partition induced by (*0*2!#2lignments) hynerplanes

Proof: P2

* For any pair of alignments A, 4’, prefer A over A" when !
2iPi+ fi(A) > X pi - fi(A7).

* Preference for A vs A" determined by hyperplane H, 4.

e LetH ={H, u | A A" alignments}.

« On any region R in R% \ A , alignment ordering fixed.

* |t DP solver breaks ties reasonably, output constant.




Key structural property

Lemma:
» For any sequence pair S,S’ € I, there exists partition of R? such that:
For any region R, across all p € R, algorithm’s output is invariant

+ Partition induced by (*0*2!#2lignments) hynerplanes

Similarity to ground truth
Corollary:

 For fixed S,S’, algorithm’s utility is
piecewise-constant function of p

P1




Key structural property

Lemma:
» For any sequence pair S,S’ € I, there exists partition of R? such that:

For any region R, across all p € R, algorithm’s output is invariant
(total H allgnments

* Partition induced by ) hyperplanes

Total # alignments when [S], |S'| < n at most 2"n*"*1



Generalization for pairwise alignment

For any sequence pair (S,S"):
u,(S,S") = utility of using params p € R? to align §, S’
Similarity between algorithm’s output & ground truth

Theorem
Pseudo-dimension of {up | p € R} is O(dn) where n = max |S|

Proof: Pseudo-dimension is 0(d log(k)) where k = 0(2™n?"t1)

Corollary

Optimal p on sample of size 5(661—7;) is e-optimal for D w.h.p.



Improvement for a special case

Special case widely used in practice:

Given parameters p4, p,, p3 = 0, find alignment maximizing:
(# matches) — p; - (# mismatches) — p, - (# indels) — p3 - (# gaps)

Theorem

[Gustield, Balasubramanian, Naor '94; Fernandez-Baca, Seppalainen, Slutzki ‘04]
» For any sequence pair S, S’, there exists partition of R3 such that:
For any region R, across all p € R, algorithm’s output is invariant
* Partition induced by 0(n®) hyperplanes

Improvement from = n™ to n®



P1

Improvement for a special case

P2

Given parameters p4, p,, p3 = 0, find alignment maximizing:
(# matches) — p; - (# mismatches) — p, - (# indels) — p3 - (# gaps)

Theorem
Pseudo-dim of {up | p € R3}is O(logn) where n = max |S]
vs 0(dn)

Corollary

1og2n) is e-optimal for D w.h.p.

€

» Optimal p on sample of size O(
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Multiple sequence alignment
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Multiple sequence alignment

Input: Collection of sequences S, ..., Sy € 2"

Alignment: Sequences T4, ..., Ty € (Z U {—})" such that:

1 1

Deleting “—" from t; yields S;.

SleCTG T1:A__CTG
SZZGTCA TZZ_GTCA_
S.=CTTA ;=C-TTA -



Multiple sequence alignment algorithms

Given parameters p € R%:
Find alignment A maximizing: p; - f1(4) + -+ pg * f41(A)

f1(4), ..., f4(A) teatures of alignment A (e.g., # matches, ...)
Dynamic programming table has n" entries — exp. running time!
Finding mAinp1 - f1(A) + -+ pg - fa(A) is NP-complete!

[Wang and Jiang, 1994, Kececioglu and Starrett, 2004]

In practice, use heuristic algorithms



Progressive multiple sequence alignment

Given a binary guide tree over sequences

e.g. obtained by clustering sequences

T123
Use pairwise algo to align children of each node T1o
Find pairwise alignments minimizing 3; p; - fi(4)
Output alignment at the root node Si S, S3

Algorithm parameters: py, ..., p4



Progressive multiple sequence alignment

A-CT-TG
AGCTA-G
AG——AG
A-CTAG
ACTTG
AC——G
A-TTG

ACG| ATTG
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Key structural property

Lemma:
* For any sequences S, ..., Sy € L™, there exists partition of R4 such that:
For any region R, across all p € R, algorithm’s output is invariant
» Partition induced by k hyperplanes with log(k) = 0(d"*'nN)
n = bound on depth of guide trees

|dea:

Solve pairwise alignment at each node.

Collect the hyperplanes from each node!

Complication: prob. at internal node depends

on children alignment.

Include hyperplanes for every possible S, S, S,
problem faced at each node.



Pseudo-dim of multi-sequence alignment

Theorem
Pseudo-dimension of {up | p € R?%}is O(d"*?nN)
n = number of problems
N = number of sequences per problem

d = number of alignment features
n = bound on guide-tree depth.

Corollary
n+2

Optimal p on sample of size 0(E—="8) is e-optimal for D w.h.p.

€2

It guide trees roughly balanced, then n = 0O(log(n)).
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RNA folding

RNA assembled as a chain of bases
Denoted as sequence in {4,U, C,G}"

Often found as single strand folded into itself
Non-adjacent bases physically bound together

Given unfolded RNA strand:

Infer how would naturally fold
Sheds light on function

We provide sample complexity guarantees for inferring RNA folding



Predicting TADs

Linear DNA of genome wraps into 3D structures
Influence genome function

Topologically associating domains (TADs):
Contiguous segments of genome
that fold into compact regions

We provide sample complexity guarantees for predicting TADs



Conclusion

* Goal: Learn parameters for sequence alignment to recover
ground truth alignments

» Sample complexity for pairwise alignment.
« Sample complexity for progressive multi-sequence alignment

* Mentioned other computational biology applications



