Sample Complexity of Algorithm Configuration for Sequence Alignment

Travis Dick

Nina Balcan

Dan DeBlasio

Carl Kingsford

Tuomas Sandholm

Ellen Vitercik

Sequence alignment

Goal: Line up pairs of strings (DNA, RNA, protein, ...)
Uncover functional, structural, or evolutionary relationships

 $S_1 = GRTCPKPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP$ $S_2 = EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGPEEIECTKLGNWSAMPSCKA$

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Sequence alignment algorithms

Typically optimize for alignment *features*: Number of matching characters, number of gaps, ...

[Needleman and Wunsch '70; Gotoh '82]

Standard algos solve for alignment maximizing weighted sum How to tune the feature weights?

Sequence alignment algorithms

Can sometimes access ground-truth alignment Requires extensive manual alignments

Given set of application's "typical" alignment problems, together with ground-truth alignments, can we learn parameters that recover ground truth?

- 1. Fix a parameterized alignment optimization function
- 2. Receive sample problems from unknown distribution

Sequence S_1 Sequence S_m Sequence S_1' Sequence S_m' Alignment \star Alignment

3. Find parameter values with best performance over samples

Closest to ground truth, for example

- 1. Fix a parameterized alignment optimization function
- 2. Receive sample problems from unknown distribution

Sequence S_1 Sequence S_m Sequence S_1' Sequence S_m' Alignment \star Alignment

3. Find parameter values with best performance over samples

Model studied from empirical perspective

Kim and Kececioglu '07; Xu, Hutter, Hoos, Leyton-Brown '08; Dai, Khalil, Zhang, Dilkina, Song '17 ...

- 1. Fix a parameterized alignment optimization function
- 2. Receive sample problems from unknown distribution

Sequence S_1 Sequence S_m Sequence S_1' Sequence S_m' Alignment \star Alignment

3. Find parameter values with best performance over samples

Model studied from theoretical perspective

Gupta and Roughgarden '16; Kleinberg, Leyton-Brown, Lucier '17; Weisz, György, Szepesvári '18 ...

Questions

Focus of this talk:

Will those parameters have high performance in expectation?

Sequence S > Sequence S'

Focus of prior work [e.g., Kim and Kececioglu '07]:

Algorithmically, how to find good parameters over training set

 \mathcal{D} : Distribution over sequence pairs (S, S')

 \mathbb{R}^d : Set of parameters

For any sequence pair (S, S'):

 $u_{\rho}(S,S')=$ utility of using params $\rho\in\mathbb{R}^d$ to align S,S'Similarity between algorithm's output & ground truth

Generalization: Given samples $(S_1, S_1'), \dots, (S_m, S_m') \sim \mathcal{D}$, for any $\boldsymbol{\rho} \in \mathbb{R}^d$, $\left| \frac{1}{m} \sum_{i=1}^m u_{\boldsymbol{\rho}}(S_i, S_i') - \mathbb{E}_{(S,S') \sim \mathcal{D}}[u_{\boldsymbol{\rho}}(S,S')] \right| \leq ?$

Primary challenge:

Algorithmic performance is volatile function of parameters

For well-understood functions in machine learning: Close connection between function parameters and value

Outline

- 1. Pairwise sequence alignment algorithms
- 2. Sample complexity for pairwise alignment
- 3. Multiple-sequence alignment algorithms
- 4. Sample complexity for multiple-sequence alignments
- 5. Additional applications

Pairwise sequence alignment

Input: Two sequences $S, S' \in \Sigma^n$

Alignment: Sequences $\tau, \tau' \in (\Sigma \cup \{-\})^*$ such that:

Deleting "-" yields S from τ and S' from τ'

$$S = A C T G$$

 $S' = G T C A$

$$au = A - C T G$$
 $au' = -G T C A - Mismatch$
 au'
 $au' = Mismatch$
 au'
 au'

Standard algorithm with parameters $\rho_1, \rho_2, \rho_3 \geq 0$: Use dynamic programming to find alignment A maximizing: (# matches) $-\rho_1 \cdot$ (# mismatches) $-\rho_2 \cdot$ (# indels) $-\rho_3 \cdot$ (# gaps)

$$S = A C T G$$

 $S' = G T C A$

$$au = A - C T G$$
 $au' = -G T C A - Mismatch$
 $au' = Mismatch$

More generally, given parameters $\rho \in \mathbb{R}^d$:

Use dynamic programming to find alignment A maximizing:

$$\rho_1 \cdot f_1(A) + \dots + \rho_d \cdot f_d(A)$$

 $f_1(A), ..., f_d(A)$ features of alignment A (e.g., # matches, ...)

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA Ground-truth alignment

```
-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTPE-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KAGROUND-COUNDERLY Ground-truth alignment
```

```
G<mark>RTCP</mark>---KPDDLPFSTVVPLKTFYEPG<mark>EEITYSCKPGY</mark>VSRGGM<mark>RKFICPLTGLWP</mark>INTLKC<mark>TP</mark>EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA
```

Alignment by algorithm with poorly-tuned parameters

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment

GRTCP---KPDDLPFSTVVPLKTFYEPG<mark>EEITYSCKPGY</mark>VSRGGM<mark>RKFICPLTGLWP</mark>INTLKC<mark>TP</mark>EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with poorly-tuned parameters

GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTPEVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA

Alignment by algorithm with well-tuned parameters

Outline

- 1. Pairwise sequence alignment algorithms
- 2. Sample complexity for pairwise alignment
- 3. Multiple-sequence alignment algorithms
- 4. Sample complexity for multiple-sequence alignments
- 5. Additional applications

Piecewise-constant utility functions

Theorem

If for any problem x, the func $\rho \mapsto u_{\rho}(x)$ is piecewise constant and boundaries between pieces defined by k hyperplanes:

Pseudo-dimension of $\{u_{\rho} \mid \rho \in \mathbb{R}^d\}$ is $O(d \log k)$

An optimal ρ on $O\left(\frac{d \log k}{\epsilon^2}\right)$ samples is ϵ -optimal on \mathcal{D} .

Need to show piecewise constant utilities and bound log(k)

Lemma:

- For any sequence pair $S, S' \in \Sigma^n$, there exists partition of \mathbb{R}^d such that: For any region R, across all $\rho \in R$, algorithm's output is invariant
- Partition induced by (total # alignments) hyperplanes

Lemma:

- For any sequence pair $S, S' \in \Sigma^n$, there exists partition of \mathbb{R}^d such that: For any region R, across all $\rho \in R$, algorithm's output is invariant
- Partition induced by (total # alignments) hyperplanes

Proof:

- For any pair of alignments A, A', prefer A over A' when $\sum_{i} \rho_{i} \cdot f_{i}(A) > \sum_{i} \rho_{i} \cdot f_{i}(A')$.
- Preference for A vs A' determined by hyperplane $H_{AA'}$.
- Let $\mathcal{H} = \{H_{AA'} \mid A, A' \text{ alignments}\}.$
- On any region R in $\mathbb{R}^d \setminus \mathcal{H}$, alignment ordering fixed.
- If DP solver breaks ties reasonably, output constant.

Lemma:

- For any sequence pair $S, S' \in \Sigma^n$, there exists partition of \mathbb{R}^d such that: For any region R, across all $\rho \in R$, algorithm's output is invariant
- Partition induced by (total # alignments) hyperplanes

Corollary:

• For fixed S,S', algorithm's utility is piecewise-constant function of $oldsymbol{
ho}$

Similarity to ground truth

Lemma:

- For any sequence pair $S, S' \in \Sigma^n$, there exists partition of \mathbb{R}^d such that: For any region R, across all $\rho \in R$, algorithm's output is invariant
- Partition induced by (total # alignments) hyperplanes

Total # alignments when |S|, $|S'| \le n$ at most $2^n n^{2n+1}$

Generalization for pairwise alignment

For any sequence pair (S, S'):

 $u_{\rho}(S,S') = \text{utility of using params } \rho \in \mathbb{R}^d \text{ to align } S,S'$ Similarity between algorithm's output & ground truth

Theorem

Pseudo-dimension of $\{u_{\rho} \mid \rho \in \mathbb{R}^d\}$ is $\tilde{O}(dn)$ where $n = \max |S|$

Proof: Pseudo-dimension is $O(d \log(k))$ where $k = O(2^n n^{2n+1})$

Corollary

Optimal ρ on sample of size $\tilde{O}(\frac{dn}{\epsilon^2})$ is ϵ -optimal for \mathcal{D} w.h.p.

Improvement for a special case

Special case widely used in practice:

Given parameters $\rho_1, \rho_2, \rho_3 \ge 0$, find alignment maximizing: (# matches) $-\rho_1 \cdot$ (# mismatches) $-\rho_2 \cdot$ (# indels) $-\rho_3 \cdot$ (# gaps)

Theorem

[Gusfield, Balasubramanian, Naor '94; Fernández-Baca, Seppäläinen, Slutzki '04]

- For any sequence pair S, S', there exists partition of \mathbb{R}^3 such that: For any region R, across all $\rho \in R$, algorithm's output is invariant
- Partition induced by $O(n^6)$ hyperplanes

Improvement from $\approx n^n$ to n^6

Improvement for a special case

Given parameters $\rho_1, \rho_2, \rho_3 \ge 0$, find alignment maximizing: (# matches) $-\rho_1 \cdot$ (# mismatches) $-\rho_2 \cdot$ (# indels) $-\rho_3 \cdot$ (# gaps)

Theorem

Pseudo-dim of
$$\{u_{\rho} \mid \rho \in \mathbb{R}^3\}$$
 is $O(\log n)$ where $n = \max |S|$ vs $\tilde{O}(dn)$

Corollary

• Optimal $\boldsymbol{\rho}$ on sample of size $\tilde{O}(\frac{\log n}{\epsilon^2})$ is ϵ -optimal for $\mathcal D$ w.h.p.

vs
$$\tilde{O}(\frac{dn}{\epsilon^2})$$

Outline

- 1. Pairwise sequence alignment algorithms
- 2. Sample complexity for pairwise alignment
- 3. Multiple-sequence alignment algorithms
- 4. Sample complexity for multiple-sequence alignments
- 5. Additional applications

Multiple sequence alignment

```
----MPREDRATWKSNYFLKII<mark>O</mark>LLDD<mark>YP</mark>KCFIV<mark>GADNVGSKOMO</mark>QIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--<mark>P</mark>ALE
                                MPREDRATWKSNYFLKII<mark>O</mark>LLDD<mark>YP</mark>KCFIYGADNYGSK<mark>OMO</mark>QIRMSLRGK-AVYLMGKNTMMRKAIRGHLENN--<mark>P</mark>ALE
  RLAO HUMAN
                                -MPREDRATWKSNYFLKII<mark>O</mark>LLDD<mark>YP</mark>KCFIVGADNVGSK<mark>OMO</mark>OIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--<mark>P</mark>ALE
  RLAO MOUSE
                                -M<mark>P</mark>REDRATWKSNYFLKII<mark>Q</mark>LLDD<mark>YP</mark>KCFIV<mark>GADNVGS</mark>KQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE
     RLAO RAT
                                -M<mark>P</mark>REDRATWKSNYFMKII<mark>O</mark>LLDD<mark>YP</mark>KCFVVGADNVGSK<mark>OMO</mark>OIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE
  RLAO CHICK
                        -----MPREDRATWKSNYFLKII<mark>O</mark>LLDD<mark>YP</mark>KCFIV<mark>GADNVGSKOMO</mark>OIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--SALE
  RLAO RANSY
Q7ZUG3 BRARE
                       -----MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQTIRLSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE
                        -----MPREDRATWKSNYFLKIIQLLNDYPKCFIVGADNVGSKQMQTIRLSLRGK-AIVLMGKNTMMRKAIRGHLENN--PALE
  RLAO ICTPU
                               -MVRENKAAWKAQYFIKVVELFDEF<mark>P</mark>KCFIV<mark>GADNVGSKQMQNIRTSLRG</mark>L-AVVLM<mark>GKNT</mark>MMRKAIRGHLENN--<mark>P</mark>QLE
  RLAO DROME
                               -MS<mark>G</mark>AG-SKR<mark>K</mark>KLFIEKATKLFTTYDKMIVAEADFV<mark>GS</mark>SQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADSK--<mark>P</mark>ELD
                              --MSGAG-SKRKNVFIEKATKLFTTYDKMIVAEADFVGSSQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADSK--PELD
                     ----<mark>----MAKLSKQQKKQMYIEKLSSLIQQYSKILIVHVDNVGS</mark>N<mark>QMASVRKSLRG</mark>K-ATILM<mark>GKNT</mark>RIRTALKKNL<mark>Q</mark>AV--<mark>P</mark>QIE
                      --MI<mark>G</mark>LAVTTTKKIAKWKVDEVAELTEKLKT<mark>H</mark>KTIIIANIEGF<mark>P</mark>ADKLHEI<mark>R</mark>KKLRGK-ADIKV<mark>TKN</mark>NLFNIALKNAG
                      -MRIMAVITQERKIAKW<mark>K</mark>IEEVKELE<mark>Q</mark>KLREYHTIIIANIEGFP</mark>ADKLHDI<mark>R</mark>KKMRGM-AEI<mark>KVTKNT</mark>LF<mark>G</mark>IAAKNAG
                      -MKRLALALKQRKVASWKLEEVKELTELIKNSNTILI<mark>G</mark>NLEGFPADKLHEIRKKLRGK-ATIKVTKNT</mark>LFKIAAKNAG
  RLAO AERPE MSVVSLVGQMYKREKPIPEWKTLMLRELEELFSKHRVVLFADLTGTPTFVVQRVRKKLWKK-YPMMVAKKRIILRAMKAAGLE
  RLAO PYRAE -MMLAIGKRRYVRTRQYPARKVKIVSEATELLQKYPYVFLFDLHGLSSRILHEYRYRLRRY-GVIKIIKPTLFKIAFTKVYGG
                       --MAEERHHTEHI<mark>P</mark>QWKKDEIENIKELIQSHKVFGMVGIEGILATKMQKIRRDLKDV-AVLKVSRNTLTERALNQLG
                       --MAEERHHTEHI<mark>P</mark>QWKKDEIENIKELIQSHKVFGMVRIEGILATKI<mark>Q</mark>KIRRDLKDV-AVLKVSRNTLTERALNQLG
  RLAO ARCFU -----MAAVRGS---PPEYKVRAVEEIKRMISSKPVVAIVSFRNVPAGQMQKIRREFRGK-AEIKVVKNTLLERALDALG
  RLAO METKA MAVKAKGOPPSGYEPKVAEWKRREVKELKELMDEYENVGLVDLEGIPAPOLOEIRAKLRERDTIIRMSRNTLMRIALEEKLDER--PELE
  RLAO METTH ------MAHVAEWKKKEVQELHDLIKGYEVVGIANLADIPARQLQKMRQTLRDS-ALIRMSKKTLISLALEKAGREL--ENVD
```

Multiple sequence alignment

Input: Collection of sequences $S_1, ..., S_N \in \Sigma^n$

Alignment: Sequences $\tau_1, ..., \tau_N \in (\Sigma \cup \{-\})^*$ such that: Deleting "-" from τ_i yields S_i .

$$S_1 = A C T G$$
 $au_1 = A - C T G$
 $S_2 = G T C A$ $au_2 = -G T C A -$
 $S_3 = C T T A$ $au_3 = C - T T A -$

Multiple sequence alignment algorithms

Given parameters $\rho \in \mathbb{R}^d$:

Find alignment A maximizing: $\rho_1 \cdot f_1(A) + \cdots + \rho_d \cdot f_d(A)$

 $f_1(A), ..., f_d(A)$ features of alignment A (e.g., # matches, ...)

Dynamic programming table has n^N entries – exp. running time!

Finding $\min_{A} \rho_1 \cdot f_1(A) + \dots + \rho_d \cdot f_d(A)$ is NP-complete! [Wang and Jiang, 1994, Kececioglu and Starrett, 2004]

In practice, use heuristic algorithms

Progressive multiple sequence alignment

Given a binary guide tree over sequences e.g. obtained by clustering sequences

Use pairwise algo to align children of each node Find pairwise alignments minimizing $\sum_i \rho_i \cdot f_i(A)$

Output alignment at the root node

Algorithm parameters: ρ_1, \dots, ρ_d

Progressive multiple sequence alignment

Outline

- 1. Pairwise sequence alignment algorithms
- 2. Sample complexity for pairwise alignment
- 3. Multiple-sequence alignment algorithms
- 4. Sample complexity for multiple-sequence alignments
- 5. Additional applications

Lemma:

- For any sequences $S_1, ..., S_N \in \Sigma^n$, there exists partition of \mathbb{R}^d such that: For any region R, across all $\rho \in R$, algorithm's output is invariant
- Partition induced by k hyperplanes with $\log(k) = \tilde{O}(d^{\eta+1}nN)$ η = bound on depth of guide trees

Idea:

- Solve pairwise alignment at each node.
- Collect the hyperplanes from each node!
- Complication: prob. at internal node depends on children alignment.
- Include hyperplanes for every possible problem faced at each node.

Pseudo-dim of multi-sequence alignment

Theorem

```
Pseudo-dimension of \{u_{\rho} \mid \rho \in \mathbb{R}^d\} is \tilde{O}(d^{\eta+2}nN)
```

n = number of problems

N = number of sequences per problem

d = number of alignment features

 η = bound on guide-tree depth.

Corollary

Optimal ρ on sample of size $\tilde{O}(\frac{d^{\eta+2}nN}{\epsilon^2})$ is ϵ -optimal for \mathcal{D} w.h.p.

If guide trees roughly balanced, then $\eta = O(\log(n))$.

Outline

- 1. Pairwise sequence alignment algorithms
- 2. Sample complexity for pairwise alignment
- 3. Multiple-sequence alignment algorithms
- 4. Sample complexity for multiple-sequence alignments
- 5. Additional applications

RNA folding

RNA assembled as a chain of bases Denoted as sequence in $\{A, U, C, G\}^*$

Often found as single strand folded into itself Non-adjacent bases physically bound together

Given unfolded RNA strand: Infer how would naturally fold Sheds light on function

We provide sample complexity guarantees for inferring RNA folding

Predicting TADs

Linear DNA of genome wraps into 3D structures Influence genome function

Topologically associating domains (TADs):
Contiguous segments of genome
that fold into compact regions

We provide sample complexity guarantees for predicting TADs

Conclusion

• Goal: Learn parameters for sequence alignment to recover ground truth alignments

Sample complexity for pairwise alignment.

• Sample complexity for progressive multi-sequence alignment

Mentioned other computational biology applications