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Sequence alignment

Goal: Line up pairs of strings (DNA, RNA, protein, …)
Uncover functional, structural, or evolutionary relationships

GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

𝑺𝟏 = GRTCPKPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
𝑺𝟐 = EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGPEEIECTKLGNWSAMPSCKA



Sequence alignment algorithms

Typically optimize for alignment features:
Number of matching characters, number of gaps, …
[Needleman and Wunsch ‘70; Gotoh ’82]

Standard algos solve for alignment maximizing weighted sum
How to tune the feature weights?



Sequence alignment algorithms

Can sometimes access ground-truth alignment
Requires extensive manual alignments

Given set of application’s “typical” alignment problems,
together with ground-truth alignments,

can we learn parameters that recover ground truth?



Model

1. Fix a parameterized alignment optimization function
2. Receive sample problems from unknown distribution

3. Find parameter values with best performance over samples

Closest to ground truth, for example
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Model

1. Fix a parameterized alignment optimization function
2. Receive sample problems from unknown distribution

3. Find parameter values with best performance over samples

Model studied from empirical perspective
Kim and Kececioglu ’07; Xu, Hutter, Hoos, Leyton-Brown ’08; Dai, Khalil, Zhang, Dilkina, Song ’17 …
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Model

1. Fix a parameterized alignment optimization function
2. Receive sample problems from unknown distribution

3. Find parameter values with best performance over samples

Model studied from theoretical perspective
Gupta and Roughgarden ’16; Kleinberg, Leyton-Brown, Lucier ‘17; Weisz, György, Szepesvári ‘18 …

Sequence 𝑆&
Sequence 𝑆&'

Alignment
⋯
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Questions

Focus of this talk:
Will those parameters have high performance in expectation?

Focus of prior work [e.g., Kim and Kececioglu ’07]:
Algorithmically, how to find good parameters over training set

Sequence 𝑆&
Sequence 𝑆&'

Alignment

Sequence 𝑆
Sequence 𝑆′?Sequence 𝑆)

Sequence 𝑆)'
Alignment

⋯



Model

𝒟: Distribution over sequence pairs (𝑆, 𝑆')
ℝ0: Set of parameters

For any sequence pair (𝑆, 𝑆'):
𝑢𝝆 𝑆, 𝑆' = utility of using params 𝝆 ∈ ℝ0 to align 𝑆, 𝑆'

Similarity between algorithm’s output & ground truth

Generalization: Given samples 𝑆&, 𝑆&' , … , 𝑆), 𝑆)' ~𝒟,

for any 𝝆 ∈ ℝ0, &
)
∑89&) 𝑢𝝆 𝑆8, 𝑆8' − 𝔼(<,<=)~𝒟[𝑢𝝆 𝑆, 𝑆′ ] ≤ ?



Primary challenge:
Algorithmic performance is volatile function of parameters

For well-understood functions in machine learning:
Close connection between function parameters and value

Similarity to ground truth

𝜌&

𝜌B



Outline

1. Pairwise sequence alignment algorithms
2. Sample complexity for pairwise alignment
3. Multiple-sequence alignment algorithms
4. Sample complexity for multiple-sequence alignments
5. Additional applications



Pairwise sequence alignment

Input: Two sequences 𝑆, 𝑆′ ∈ ΣD

Alignment: Sequences 𝜏, 𝜏′ ∈ Σ ∪ − ∗ such that:
Deleting “−” yields 𝑆 from 𝜏 and 𝑆′ from 𝜏′

𝑆 = A C T G
𝑆′ = G T C A

𝜏 = A – - C T G
𝜏′ = - G T C A -

Insertion/deletion (indel)
Match

Mismatch

Gap



Pairwise sequence alignment algorithms

Standard algorithm with parameters 𝜌&, 𝜌B, 𝜌H ≥ 0:
Use dynamic programming to find alignment 𝐴 maximizing:

(# matches)− 𝜌& L (# mismatches) − 𝜌B L (# indels) − 𝜌H L (# gaps)

𝑆 = A C T G
𝑆′ = G T C A

𝜏 = A – - C T G
𝜏′ = - G T C A -

Insertion/deletion (indel)
Match

Mismatch

Gap



Pairwise sequence alignment algorithms

More generally, given parameters 𝝆 ∈ ℝ0:
Use dynamic programming to find alignment 𝐴 maximizing:
𝜌& L 𝑓& 𝐴 +⋯+ 𝜌0 L 𝑓0 𝐴

𝑓& 𝐴 ,… , 𝑓0 𝐴 features of alignment 𝐴 (e.g., # matches, …)



Pairwise sequence alignment algorithms

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA

Ground-truth alignment
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Pairwise sequence alignment algorithms

-GRTCPKPDDLPFSTVVP-LKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
E-VKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGYSLDGP-EEIECTKLGNWSAMPSC-KA
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GRTCP---KPDDLPFSTVVPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDN-GFVNYPAKPTLYYK-DKATFGCHDGY-SLDGPEEIECTKLGNWS-AMPSCKA

Alignment by algorithm with poorly-tuned parameters

GRTCPKPDDLPFSTV-VPLKTFYEPGEEITYSCKPGYVSRGGMRKFICPLTGLWPINTLKCTP
EVKCPFPSRPDNGFVNYPAKPTLYYKDKATFGCHDGY-SLDGPEEIECTKLGNWSA-MPSCKA

Alignment by algorithm with well-tuned parameters



Outline

1. Pairwise sequence alignment algorithms
2. Sample complexity for pairwise alignment
3. Multiple-sequence alignment algorithms
4. Sample complexity for multiple-sequence alignments
5. Additional applications



Piecewise-constant utility functions

Theorem
If for any problem 𝑥, the func 𝜌 ↦ 𝑢Q 𝑥 is piecewise constant and 

boundaries between pieces defined by 𝑘 hyperplanes:
Pseudo-dimension of 𝑢𝝆 𝝆 ∈ ℝ0 is O 𝑑 log 𝑘
An optimal 𝝆 on 𝑂 0 YZ[ \

]^
samples is 𝜖-optimal on 𝒟.

𝑢` 𝝆

𝜌&

𝜌B

Need to show piecewise constant utilities and bound log(𝑘)

𝑥 = (𝑆, 𝑆')



Key structural property

Lemma:
• For any sequence pair 𝑆, 𝑆' ∈ ΣD, there exists partition of ℝ0 such that:

For any region 𝑅, across all 𝝆 ∈ 𝑅, algorithm’s output is invariant
• Partition induced by 𝐭𝐨𝐭𝐚𝐥 # 𝐚𝐥𝐢𝐠𝐧𝐦𝐞𝐧𝐭𝐬

B hyperplanes

𝜌&

𝜌B



Key structural property

Lemma:
• For any sequence pair 𝑆, 𝑆′ ∈ ΣD, there exists partition of ℝ0 such that:

For any region 𝑅, across all 𝝆 ∈ 𝑅, algorithm’s output is invariant
• Partition induced by 𝐭𝐨𝐭𝐚𝐥 # 𝐚𝐥𝐢𝐠𝐧𝐦𝐞𝐧𝐭𝐬

B hyperplanes

Proof:
• For any pair of alignments 𝐴, 𝐴′, prefer 𝐴 over 𝐴' when 
∑8 𝜌8 ⋅ 𝑓8 𝐴 > ∑8 𝜌8 ⋅ 𝑓8(𝐴').

• Preference for 𝐴 vs 𝐴' determined by hyperplane 𝐻pp=.
• Let ℋ = {𝐻pp= ∣ 𝐴, 𝐴′ alignments}.
• On any region 𝑅 in ℝ0 ∖ℋ , alignment ordering fixed.
• If DP solver breaks ties reasonably, output constant.

𝜌&

𝜌B

𝐻pp=



Key structural property

Lemma:
• For any sequence pair 𝑆, 𝑆′ ∈ ΣD, there exists partition of ℝ0 such that:

For any region 𝑅, across all 𝝆 ∈ 𝑅, algorithm’s output is invariant
• Partition induced by 𝐭𝐨𝐭𝐚𝐥 # 𝐚𝐥𝐢𝐠𝐧𝐦𝐞𝐧𝐭𝐬

B hyperplanes

Corollary:
• For fixed 𝑆, 𝑆′, algorithm’s utility is

piecewise-constant function of 𝝆

Similarity to ground truth

𝜌&

𝜌B



Key structural property

Lemma:
• For any sequence pair 𝑆, 𝑆′ ∈ ΣD, there exists partition of ℝ0 such that:

For any region 𝑅, across all 𝝆 ∈ 𝑅, algorithm’s output is invariant
• Partition induced by 𝐭𝐨𝐭𝐚𝐥 # 𝐚𝐥𝐢𝐠𝐧𝐦𝐞𝐧𝐭𝐬

B hyperplanes

Total # alignments when 𝑆 , 𝑆' ≤ 𝑛 at most 2D𝑛BDx&



Generalization for pairwise alignment

For any sequence pair (𝑆, 𝑆'):
𝑢𝝆 𝑆, 𝑆' = utility of using params 𝝆 ∈ ℝ0 to align 𝑆, 𝑆'

Similarity between algorithm’s output & ground truth

Theorem
Pseudo-dimension of 𝑢𝝆 | 𝝆 ∈ ℝ0 is z𝑂 𝑑𝑛 where 𝑛 = max |𝑆|

Corollary
Optimal 𝝆 on sample of size z𝑂(0D

]^
) is 𝜖-optimal for 𝒟 w.h.p.

Proof: Pseudo-dimension is 𝑂(𝑑 log 𝑘 ) where 𝑘 = 𝑂(2D𝑛BDx&)



Improvement for a special case
Special case widely used in practice:

Given parameters 𝜌&, 𝜌B, 𝜌H ≥ 0, find alignment maximizing:
(# matches)− 𝜌& L (# mismatches) − 𝜌B L (# indels) − 𝜌H L (# gaps)

Theorem
[Gusfield, Balasubramanian, Naor ’94; Fernández-Baca, Seppäläinen, Slutzki ‘04]
• For any sequence pair 𝑆, 𝑆′, there exists partition of ℝH such that:

For any region 𝑅, across all 𝝆 ∈ 𝑅, algorithm’s output is invariant
• Partition induced by 𝑂 𝑛~ hyperplanes

Improvement from ≈ 𝑛D to 𝑛~



Improvement for a special case

Given parameters 𝜌&, 𝜌B, 𝜌H ≥ 0, find alignment maximizing:
(# matches)− 𝜌& L (# mismatches) − 𝜌B L (# indels) − 𝜌H L (# gaps)

Theorem
Pseudo-dim of 𝑢𝝆 | 𝝆 ∈ ℝH is 𝑂 log 𝑛 where 𝑛 = max |𝑆|

Corollary
• Optimal 𝝆 on sample of size z𝑂(YZ[ D

]^
) is 𝜖-optimal for 𝒟 w.h.p.

𝜌&

𝜌B

vs z𝑂(𝑑𝑛)

vs z𝑂(0D
]^
)



Outline

1. Pairwise sequence alignment algorithms
2. Sample complexity for pairwise alignment
3. Multiple-sequence alignment algorithms
4. Sample complexity for multiple-sequence alignments
5. Additional applications



Multiple sequence alignment



Multiple sequence alignment

Input: Collection of sequences S&, … , S� ∈ ΣD

Alignment: Sequences 𝜏&, … , 𝜏� ∈ Σ ∪ − ∗ such that:
Deleting “−” from 𝜏8 yields 𝑆8.

𝑆& = A C T G
𝑆B = G T C A
𝑆H = C T T A

𝜏& = A – - C T G
𝜏B = - G T C A –
𝜏H = C - T T A –



Multiple sequence alignment algorithms

Given parameters 𝝆 ∈ ℝ0:
Find alignment 𝐴 maximizing:  𝜌& L 𝑓& 𝐴 +⋯+ 𝜌0 L 𝑓0 𝐴

𝑓& 𝐴 ,… , 𝑓0 𝐴 features of alignment 𝐴 (e.g., # matches, …)

Dynamic programming table has 𝑛� entries – exp. running time!

Finding min
p
𝜌& ⋅ 𝑓& 𝐴 +⋯+ 𝜌0 ⋅ 𝑓0(𝐴) is NP-complete!

[Wang and Jiang, 1994, Kececioglu and Starrett, 2004]

In practice, use heuristic algorithms



Progressive multiple sequence alignment

Given a binary guide tree over sequences
e.g. obtained by clustering sequences

Use pairwise algo to align children of each node
Find pairwise alignments minimizing ∑8 𝜌8 ⋅ 𝑓8(𝐴)

Output alignment at the root node

Algorithm parameters: 𝜌&, … , 𝜌0

𝑆& 𝑆B 𝑆H

𝜏&B

𝜏&BH



Progressive multiple sequence alignment
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Key structural property
Lemma:
• For any sequences 𝑆&, … , 𝑆� ∈ ΣD, there exists partition of ℝ0 such that:

For any region 𝑅, across all 𝝆 ∈ 𝑅, algorithm’s output is invariant
• Partition induced by 𝑘 hyperplanes with log 𝑘 = z𝑂 𝑑�x&𝑛𝑁

𝜂 = bound on depth of guide trees

𝑆& 𝑆B 𝑆H

Idea:
• Solve pairwise alignment at each node.
• Collect the hyperplanes from each node!
• Complication: prob. at internal node depends 

on children alignment.
• Include hyperplanes for every possible 

problem faced at each node.



Pseudo-dim of multi-sequence alignment

Theorem
Pseudo-dimension of 𝑢𝝆 | 𝝆 ∈ ℝ0 is z𝑂 𝑑�xB𝑛𝑁

𝑛 = number of problems
𝑁 = number of sequences per problem
𝑑 = number of alignment features
𝜂 = bound on guide-tree depth.

Corollary

Optimal 𝝆 on sample of size z𝑂(0
��^D�
]^

) is 𝜖-optimal for 𝒟 w.h.p.

If guide trees roughly balanced, then 𝜂 = O(log(𝑛)).
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RNA folding

RNA assembled as a chain of bases
Denoted as sequence in {𝐴, 𝑈, 𝐶, 𝐺}∗

Often found as single strand folded into itself
Non-adjacent bases physically bound together

Given unfolded RNA strand:
Infer how would naturally fold
Sheds light on function

We provide sample complexity guarantees for inferring RNA folding



Predicting TADs

Linear DNA of genome wraps into 3D structures
Influence genome function

Topologically associating domains (TADs):
Contiguous segments of genome

that fold into compact regions

We provide sample complexity guarantees for predicting TADs



Conclusion

• Goal: Learn parameters for sequence alignment to recover 
ground truth alignments

• Sample complexity for pairwise alignment.

• Sample complexity for progressive multi-sequence alignment

• Mentioned other computational biology applications


